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Abstract
Here we consider how phase-separation kinetics and morphology are affected
by the preferential wetting of a solid surface by one component of a binary
fluid mixture. The behaviour is crucially dependent upon whether the spinodal
decomposition is bicontinuous-type or droplet-type, i.e. the composition
symmetry. Near a symmetric composition, wetting effects are strongly
delocalized by hydrodynamic effects unique to bicontinuous phase separation.
We discuss the physical mechanism of the unusually fast lateral growth of
wetting domains found by Wiltzius and Cumming, the thickening dynamics
of wetting layers, and pattern evolution under the influence of surface fields,
focusing on the roles of hydrodynamics. We point out a novel possibility
of double phase separation: that the quick hydrodynamic reduction of the
interface area may spontaneously destabilize the phase-separated macroscopic
domains and induce secondary phase separation. We also consider effects of
the preferential wetting of immobile and mobile particles by one component of
a fluid mixture on phase separation and the resulting complex pattern evolution.
It is demonstrated that hydrodynamics always plays crucial roles in the pattern
evolution of a phase-separating fluid mixture interacting with solid surfaces.

1. Introduction

Phase-separation phenomena have been extensively studied in the past three decades from both
the experimental and the theoretical viewpoints [1,2]. Since the finding of a complete–partial
wetting transition near a critical point of a binary mixture by Cahn [3], wetting phenomena
have also been intensively studied [4, 5]. In general, phase separation can never be free from
surface effects since material should be confined in a container in any experiment. Thus,
it is of fundamental importance to study how the preferential wetting of the surface by one
component of a mixture affects the phase-separation kinetics and morphology evolution (see
references [6–8] for review). For example, we are interested in the following questions:

(i) How far from the solid surface do wetting effects affect phase separation? What physical
factors determine the degree of delocalization of the surface effects?

(ii) How do droplets ‘feel’ a solid wall?
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(iii) How is material transported toward the solid wall and how is the wetting layer formed?
(iv) What is the role of hydrodynamics?
(v) How does the geometry of confinement affect the final morphology?

In addition to these fundamental areas of interest, the understanding of wetting effects on
phase separation and the resulting self-organization is also of practical importance in material
processing, including the morphological control of nanomaterial, composite material and thin-
film coating, which may become key technologies in the 21st century.

Phase separation produces two semi-macroscopic phases having different abilities to wet
the surface of the third material, reflecting the difference in energy of interaction with the surface
between the two phases. Thus the phases are spatially rearranged during phase separation to
lower the total energy, including that of the solid–liquid interactions. The late stage of pattern
evolution is governed by the complex interplay between the liquid–liquid and solid–liquid
interfacial energies and the resulting hydrodynamic transport of material.

Here we discuss the wetting dynamics of a mixture undergoing phase separation in
confined geometry, such as a quasi-one-dimensional (1D) or a quasi-two-dimensional (2D)
capillary. Throughout this article, a 1D capillary means a capillary tube, while a 2D capillary
means a cell made of two parallel glass plates with a narrow gap. We also discuss the effects of
hydrodynamics on the pattern evolution, focusing on the composition symmetry. A container
can in principle be gas, immiscible liquid, or solid. Since solid containers are most often used
and practically most important, we here consider phase separation of fluid mixtures in contact
with solid surfaces. A solid container imposes fixed-solid boundary conditions. The problems
of effects of the moving boundary with gas and liquid on phase separation are beyond the scope
of this article, although they are of practical importance in thin-film technologies (see, e.g.,
references [9,10] and references therein). We also consider how wetting mobile and immobile
particles affects phase separation of a fluid mixture containing such particles.

The structure of this article is as follows. In section 2, we describe the theoretical back-
ground required to understand the phase-separation behaviour of fluid mixtures and the roles
of hydrodynamics. In section 3, we show the results of experimental observation of pattern
evolution in a confined geometry. In section 4, we discuss the early-stage wetting dynamics,
focusing on the hydrodynamic effects, using a simple scaling argument. In section 5, we discuss
the late-stage domain growth in a 2D capillary. In section 6, we describe the phenomenon of
wetting-induced double phase separation and discuss its possible mechanism. In section 7, we
discuss the effects of wetting immobile and mobile particles on phase separation. In section 8,
we review the 3D numerical simulation studies of wetting effects on phase separation of fluid
mixtures and check the validity of our physical picture and scaling argument. In section 9, we
summarize our article.

2. Theoretical background

2.1. Bulk phase separation without surface effects

Since we are interested in macroscopic pattern evolution, we use the coarse-grained picture to
consider the problem. The basic Langevin equations describing the dynamics of a fluid model
(model H in the Hohenberg–Halperin notation) are [1, 2, 11, 12]

∂

∂t
φ = −∇ · (φv) + Lξ ∇2 δ

δφ
(βH) + θ (1)

ρ
∂

∂t
v = Fφ − ∇p + η∇2v + ι (2)
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whereφ is the composition, v is the velocity, β = 1/kBT (kB : Boltzmann’s constant),Lξ is the
renormalized transport coefficient, ρ is the density, η is the viscosity, and θ and ι are thermal
noises. The pressure p is determined to satisfy the incompressibility condition ∇ · v = 0.
Here H is the Ginzburg–Landau-type Hamiltonian given by

βH =
∫

dr

[
−1

2
τφ2 +

1

4
uφ4 +

1

2
C|∇φ|2

]
. (3)

In equation (2), Fφ is the thermodynamic force density acting on the fluid due to the fluctuations
of the composition φ and Fφ = −φ∇µ = −∇π + kBTKφ∇ ∇2φ (π : osmotic pressure),
where µ = δH/δφ is the chemical potential.

Before discussing the hydrodynamic effects on the wetting dynamics, we need to
understand their effects on bulk phase separation, which can be described by the above set of
equations. After the formation of a sharp interface, the interface profile can be approximately
described by the local equilibrium composition profile of an interface, φint = φe tanh(ζ/

√
2ξ),

where φe (=
√|τ |/u) is the equilibrium composition and ξ is the correlation length (ξ =√

C/|τ |). ζ is the distance from the interface defined by ζ = n · (r − ra), where ra is a
point on the interface and n is the unit normal vector of the interface at the point ra toward the
domain with a positive value of φ. Then, the thermodynamic force density due to the interface
F int
φ can be expressed by

F int
φ

kBT
= −C ∇2φ∇φ = −C(∇ · n)

(
∂φint

∂ζ

)2

n. (4)

Note that the conserved part of the force cannot produce any velocity fields for an
incompressible fluid and should be balanced with the pressure p. Here ∇ · n is the curvature
at ra and ∇ · n = 1/R1 + 1/R2, where 1/R1 and 1/R2 are the two principal curvatures of the
interface. Thus, we obtain the following equation by putting equation (4) into equation (2)
and using the relation kBT C(∂φint/∂ζ )

2 ∼= σδ(ζ ) where σ is the interface tension:

−∇p′ − σ

(
1

R1
+

1

R2

)
δ(ζ )n + η∇2v + ι = 0. (5)

It is convenient in some cases to scale length and time, respectively, by the correlation
length of composition fluctuations ξ and its lifetime τξ = ξ 2/Dξ , whereDξ is the renormalized
diffusion constant given by Dξ = τLξ . Upon scaling length and time and neglecting noises,
equation (2) becomes ∂V /∂t =  F − ∇P + "∇2V , where F and V are the scaled Fφ and
v, respectively. Here

 = τφ2
e τ

2
ξ

ρβξ 2

where ±φe are final equilibrium compositions, and

P = τ 2
ξ

ρξ 2
p " = ητξ

ρξ 2
.

Then, the fluidity parameter Rf is defined as

Rf =  

"
= τφ2

e τξ

ηβ
= 6πτφ2

e ξ
3 = 18πσξ 2β (6)

where the relation σ/kBT = 1
3τξφ

2
e is used. This parameter Rf is a measure of the relative

importance of the streaming term (hydrodynamics) versus the diffusion term (diffusion). It
should be noted that for 3D, Rf is a universal constant near a critical point [2] and estimated
as Rf = 18πAσ = 5–10 since σ = AσkBT /ξ

2, where Aσ is a universal constant and
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Aσ = 0.1–0.2. Thus, the fluidity is not a control parameter in a critical regime. In the mean-
field regime, however, this is not necessarily the case. This point will be discussed later in
section 6.2.2.

On the basis of the above equations, we consider the domain coarsening kinetics in the late
stage of phase separation. Under the incompressibility condition, the domain geometry, which
we call the ‘n-pattern’, selects the coarsening mechanism. Thus we consider bicontinuous
phase separation of symmetric fluid mixtures and droplet phase separation of off-symmetric
fluid mixtures separately. In both cases, the most important concept as regards understanding
the kinetics of bulk phase separation is the self-similar growth of domains, which ensures the
existence of only one length scale, namely, the domain size R.

(A) Bicontinuous phase separation of symmetric fluid mixtures. For a symmetric composition
(%A ∼ 1/2; %A: the volume fraction of the A-rich phase), the second term in the right-
hand side of equation (5), which is the capillary pressure, produces the velocity fields of
v ∼ σ/η that lead to the growth law R ∼ (σ/η)t (Siggia’s mechanism [13]). The scaled
version is R/ξ = bh(t/τξ ), where bh is a universal constant. Such a linear growth was
confirmed experimentally [14–18]. Note that the non-divergent character of the n-pattern
of a bicontinuous structure allows the second term of equation (5) to directly produce the
velocity fields even under the incompressibility condition. The flow in bicontinuous tubes
is driven by the gradient in the capillary pressure and its mechanism is basically the same
as the Rayleigh instability of a fluid tube.

(B) Droplet phase separation of off-symmetric fluid mixtures. For an off-symmetric com-
position (%A 	
 1/2), on the other hand, the n-pattern of droplet morphology has a
divergent character. Thus, the second term in equation (5) has to be balanced with ∇p

to satisfy ∇ · v = 0 and cannot produce any velocity fields except during collision.
Accordingly, there is a pressure difference of 2σ/R across the interface (Laplace’s law),
while there are no macroscopic velocity fields (v = 0), or no interparticle interactions. The
latter fact is the basis of the Brownian-coagulation mechanism [13, 19], which assumes
that there are no interparticle interactions and the droplet motion is driven purely by
thermal force noises ι in equation (2). In this case, the domain coarsening is driven by
a process of hydrodynamic diffusion of droplets. By considering diffusion of a droplet
of size R over the interdroplet distance ∼R, we straightforwardly obtain R2 ∼ DRt ,
where DR ∼ kBT /(5πηR). This leads to the coarsening law R ∼ (kBT /η)

1/3t1/3. The
scaled version is R/ξ = bd(t/τξ )

1/3, where bd is a universal constant. This mechanism
is well known as the Brownian-coagulation (Binder–Stauffer) mechanism [1, 2, 13]. It
should be noted that there may exist some additional mechanisms of droplet coarsening
in fluid mixtures [20–23], which originate from the coupling of composition (diffusion)
and velocity fields (convection). This may play a role in the wetting kinetics of droplets
in a fluid mixture, although we do not dwell on this problem in this article.

As will be shown later, these two coarsening mechanisms also play crucial roles in fluid
phase separation under the surface fields, and the above scaling argument is quite useful for
understanding the kinetics of wetting.

2.2. Phase separation under surface effects

In the coarse-grained picture, the surface contribution due to the existence of a wall at z = 0
can be included into the Hamiltonian as

βHtotal =
∫
z�0

dr

[
−1

2
τφ2 +

1

4
uφ4 +

1

2
K|∇φ|2 + fs(φ)δ(z)

]
(7)
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where

fs(φ) = aφ − (b/2)φ2

(a and b are constants depending upon the surface properties) [7,8]. Here the z-axis is chosen
to be perpendicular to the solid surface. The kinetic equations (equations (1) and (2)) with this
Hamiltonian should describe the phase-separation dynamics under the influence of surface
fields. However, it is difficult to gain physical insight into the complex dynamics directly
from these equations. There are two approaches to gaining a theoretical understanding of
the kinetics of wetting during phase separation in fluid mixtures. One is a phenomenological
approach, which is based on the scaling argument for the domain coarsening. The other is
that of solving the above equations numerically. The results of these two approaches will be
described later.

Before discussing the dynamics of pattern evolution, we first consider the equilibrium
problem, since knowledge about the final structure to be formed is important for the
understanding of pattern-evolution kinetics.

2.3. Composition symmetry and final equilibrium structures

Here we discuss how the composition symmetry affects the final equilibrium configuration in
a confined geometry. In the following we assume that the wetting layer is thick enough to
allow neglect of the disjointing pressure.

2.3.1. Confinement in a 2D capillary. In the late stage of phase separation, we need to
consider only the free energy originating from the interface since the bulk part of the free energy
is already minimized there. Thus, the energetic factors to be considered are the interface and
the surface contact energy. There are two possible final configurations for a 2D capillary: (1) a
layer structure (complete wetting configuration) and (2) a disc-like droplet structure (partial
wetting configuration) (see figure 1). The free energies per unit area for the configurations of
complete and partial wetting are given by

Fcw = 2(γα + σ) Fpw = 2φαγα + 2φβγβ + σf (d)

respectively. σ is the interfacial tension between the α- and β-phases and γi is the interfacial
tension between the i-phase and the wall. φα and φβ are the volume fractions of the α- and
β-phases, respectively. Here the α-phase is more able to wet the wall than the β-phase. f (d)
is the total area of the interface between the α- and β-phases per unit area. Neglecting the last
term in Fpw,

Fcw − Fpw = 2σ(1 − φβ2γ/σ)

where 2γ = γβ − γα . The morphological transition occurs at φβ = σ/2γ .

Figure 1. Final equilibrium structures for partial
and complete wetting. Here the α-phase is more
able to wet the solid wall than the β-phase.
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2.3.2. Confinement in a 1D capillary. As discussed by Liu et al [24], the free energies per
unit length for the configurations of complete and partial wetting (tube and plug) (see figure 1)
for a 1D capillary are given by

Fcw/2π = rcσ + r0γα Fpw/2π = r0[φαγα + φβγβ] + g(r0)σ

respectively. Here rc is the radius of the fluid tube for the complete wetting configuration and
r2
c = φβr

2
0 . g(r0) is the total area of the interface between the α- and β-phases per unit length

for the partial wetting configuration. Provided that the last term in Fpw is negligible,

(Fcw − Fpw)/2π = r0σ [φ1/2
β − (2γ/σ)φβ].

The transition between the complete and partial wetting configurations occurs at φβ =
(σ/2γ )2.

Since σ = σ0ε
µ (µ = 1.26) and 2γ = 2γ0ε

δ (δ = 0.34) where ε = (T − Tc)/Tc,
the transition composition is given by φt = (σ0/2γ0)ε

(µ−δ) for a 2D capillary and by
φt = (σ0/2γ0)

2ε2(µ−δ) for a 1D capillary. For both 1D and 2D capillaries, thus, the
partial wetting configuration is energetically favoured near the symmetric composition for
a deep quench.

It should be noted that the above lowest-energy configuration is not necessarily realized
in a straightforward manner since there may be no direct kinetic path to it. Thus, the kinetic
factors are quite important in the mechanism of pattern evolution. This point will be discussed
later, focusing on the roles of hydrodynamics.

3. Pattern evolution in confined geometry: experimental observation

Hereafter we show the results of experimental observation, which tell us how a homogeneous
mixture reaches the final phase-separated structure described above in a confined geometry.
Although a number of pioneering works on the effects of wetting on morphological evolution
in a fluid mixture [25–32] for various conditions have appeared, we here summarize our own
studies on how wetting effects affect the pattern evolution of phase separation in fluid mixtures
on a macroscopic level. We put a special focus on the roles of hydrodynamics.

3.1. Phase separation in a 1D capillary [33, 34]

First we consider wetting effects on phase separation in binary mixtures confined in a 1D
capillary. This geometry is quite useful for getting information on the evolution of phase-
separated structures along the surface normal, which is very difficult to obtain in usual
experimental configurations. This is possible because we can see through to the inside of
a capillary tube by optical microscopy. Figures 2(a)–2(c) show the pattern evolution during
phase separation of poly(vinyl methyl ether) (PVME)/water mixtures confined in 1D capil-
laries. This mixture has a lower-critical-solution-temperature-type phase diagram and the
water-rich phase is more able to wet (we term this being more ‘wettable’ subsequently) the
glass wall than a PVME-rich one (see figure 1 of reference [33] for the phase diagram). Pattern
evolution can be grouped into three types in terms of the composition symmetry; the symmetric
critical composition is PVME/water (7/93) (weight ratio).

(a) Case (a) (see figure 2(a)). When a more wettable phase is a majority phase, non-wettable
droplets coarsen with time mainly by the Brownian-coagulation mechanism. Note that a
more wettable matrix phase naturally covers the solid wall from the beginning for this case.
Droplets slowly move toward the symmetric axis of the capillary tube with coarsening.
Eventually, non-wettable droplets of size comparable to that of the tube align on the axis.
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The droplet size finally exceeds the pore size (the crossover from three dimensions (3D)
to one dimension (1D)), and the droplets transform into capsules. Before the dimensional
crossover, however, the coarsening becomes extremely slow for the following reasons:
(1) the translational motion of droplets along the tube is strongly suppressed due to the
narrow gap between a droplet and the tube, which slows down the rate of flow, and (2)
the lack of difference in curvature between droplets makes the evaporation–condensation
mechanism [1, 2] ineffective. Note that the curvature is determined solely by the tube
diameter.

(b) Case (b) (see figure 2(b)). When the minority phase is more able to wet glass, the droplets
gradually wet the glass and form a wetting layer. More precisely, droplets move toward
the solid wall by diffusional motion, hit the wall, and eventually wet it. The resulting
wetting layer is stable for a strongly asymmetric case, but it becomes unstable for a
weakly asymmetric case and transforms into a bridge structure. Hydrodynamic stability
analysis indicates that the layer or unduloid configuration is stable for a thinner film. It
should be noted that the formation of the wetting layer is very much slower for this case
than for symmetric mixtures, since the former is governed by droplet diffusion but the
latter by direct hydrodynamic transport (see table 1 in reference [33]).

(c) Case (c) (see figure 2(c)). When the composition is nearly symmetric, bicontinuous
phase separation proceeds in the initial stage. Then the macroscopic wetting layer is
rapidly formed. It grows by the hydrodynamic pumping of fluid through the fluid tube
connected to the wetting layer. After the formation of the complete wetting layer, the
Rayleigh instability leads to the formation of bridges [33]. This instability is a result
of the competition between the destabilizing effect of the transverse curvature at long
wavelengths and the stabilizing effect of the longitudinal curvature at short wavelengths.
This instability is characteristic of a 1D capillary. There is no analogous instability in a 2D
capillary since the area of the planar interface is always increased by small perturbations to
it. After the formation of a bamboo-like structure, there is almost no coarsening because
the reasons for the slow coarsening for case (a) (see reasons (1) and (2)) apply in this case
even more strictly. Thus, the characteristic length scale of the final structure is determined
solely by the diameter of a capillary tube. Domains stop growing at a finite size due to
the lack of a kinetic path. This behaviour is markedly different from that in the case of a
2D capillary, where domains keep growing without limit in lateral directions.

3.2. Phase separation in a 2D capillary [34, 35]

The basic features are the same as those of the above cases for a 1D capillary. The pattern
evolution can also be classified into three types in terms of the composition symmetry, in the
same manner as for phase separation in a 1D capillary.

(a) Case (a) (see figure 3(a)). When a less wettable phase is a minority phase, less wettable
droplets coarsen with time mainly by the Brownian-coagulation mechanism and grow in
size. Spherical droplets transform into disc-like ones when their diameter 2a exceeds the
spacing d . After this transformation, the droplet radius a keeps growing as a result of
direct collisions between droplets as a ∼ t1/3. Although this time exponent is consistent
with the prediction of the Brownian-coagulation mechanism, there is an experimental
indication that there is attractive interaction between droplets. We proposed [20, 21] that
the coupling between concentration fields around droplets induces convective flow, which
effectively causes attractive interaction and moves droplets hydrodynamically. There are
some theoretical studies, which try to explain this behaviour along the above lines [22,23].
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(a)

Figure 2. Pattern evolution during phase separation of a mixture of poly(vinyl methyl ether)
(PVME) and water in a 1D capillary, whose walls are observed as thick black horizontal lines in the
figures. (a) Pattern evolution in PVME/water (5/95) after a temperature jump from T = 32.5 ◦C
to T = 33.9 ◦C. (b) Pattern evolution in PVME/water (10/90) after a temperature jump from
T = 32.5 ◦C to T = 33.1 ◦C. (c) Pattern evolution in PVME/water (7/93), which is near the
critical (or symmetric) composition, after a temperature jump from T = 32.5 ◦C to T = 33.4 ◦C.
Note the large difference in coarsening rate between the droplet ((a) and (b)) and bicontinuous (c)
cases.

Although there seem to be no apparent effects of wetting on this phenomenon, further
studies are necessary to completely rule out such effects and clarify the relevant mechanism
of droplet coarsening.

(b) Case (b) (see figure 3(b)). When a more wettable phase is a minority phase, droplet
spinodal decomposition takes place initially. However, droplets move toward the walls
and start to wet the glass surfaces. As a result, its number density keeps decreasing. The
wetting speed is much slower than in bicontinuous phase separation as in the case of 1D
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(b)

(c)

Figure 2. (Continued)
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(a)

(b)

Figure 3. Pattern evolution during phase separation of fluid mixtures in a 2D capillary. (a) Pattern
evolution in PVME/polystyrene (4/6) after a temperature jump from T = 165 ◦C to T = 180 ◦C.
The gap was d = 7.1µm. (b) Pattern evolution in ε-caprolactone oligomer (OCL)/styrene oligomer
(OS) (2/8) after a temperature jump from T = 140.0 ◦C to T = 110.0 ◦C. The gap was d = 7.1µm.
(c) Pattern evolution in PVME/water (7/93), which is near the critical (or symmetric) composition,
after a temperature jump from T = 32.0 ◦C to T = 33.3 ◦C. The gap was d = 3 µm.
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(c)

Figure 3. (Continued)

capillaries. This is because the hydrodynamic pumping mechanism, which is the cause of
the fast coarsening for bicontinuous phase separation, does not operate for droplet phase
separation. Eventually, all the droplets are absorbed in the wetting layers and thus become
invisible. This process results in a three-layer sandwich structure (see figure 1(b)): two
wetting layers of a more wettable phase and one sandwiched layer of a less wettable
phase. This configuration is stable against fluctuations unless the gravitational effects
destabilize it. The formation of complete wetting layers is supported by the fact that in
optical microscopic observations all the droplets completely disappear after a long time.
The details of the wetting kinetics will be discussed elsewhere [36].

(c) Case (c) (see figure 3(c)). When the composition is nearly symmetric, bicontinuous phase
separation proceeds initially. One expects, from the case of a 1D capillary, the wetting
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layer to be quickly formed by a hydrodynamic process. The interconnectivity of the
bicontinuous structure allows the hydrodynamic pumping of fluid into the wetting layers.
Thus, the more wettable phase is transported into the wetting layer in a very efficient
manner. Tubes start to bridge the two wetting layers and form disc-like droplets from
the tubes bridging the upper and lower plates. Here we call them droplets. As discussed
later, only the droplets whose lateral size is larger than the gap can grow, while all the
other small droplets just disappear. Then these larger droplets start to attract each other
by wetting-induced attractive interaction, which is driven by the hydrodynamic capillary
instability of the tube formed between the two droplets (see section 5.2). During this
process, the more wettable phase in the wetting layer turns back into droplets bridging the
two wetting layers since the pressure inside the droplets is lower than that in the wetting
layer. Accordingly, the apparent droplet area increases with time and eventually the total
area fraction of the more wettable droplets approaches 50%, which is the volume fraction
of the more wettable phase. This leads to the in-plane morphological transformation from
a droplet to an interconnected structure in the late stage. This apparent change in the
phase symmetry in an x–y plane can be explained by the existence of the wetting layer
composed of the more wettable phase, which is hidden in the observation geometry, and
its thinning.

Here we learn that the basic phase-separation behaviour in a 2D capillary is the same as
that in a 1D capillary. The only difference comes from the stability of the interface of the
wetting layer, which crucially depends on the dimensionality of the confinement geometry.

4. Early-stage wetting dynamics characteristic of bicontinuous patterns: scaling
argument

Here we consider how the phase-separation pattern transforms from the initial bicontinuous
pattern free from wall effects to a configuration strongly influenced by the preferential
wetting of the walls by one component of a mixture. For bicontinuous phase separation,
the hydrodynamics due to the capillary instability [33, 34, 37] plays a crucial role in the
coarsening under the influence of wetting. Near the symmetric composition, the wettability is
important mainly in the very initial stage to establish the initial configuration where the surface
is covered by the wetting layer, to which the bicontinuous tubes are connected. This initial
configuration establishes the anisotropic pressure gradient from the bicontinuous tubes in the
bulk to the wetting layer. Thus, the more wettable phase can be continuously supplied into
the wetting layer through the percolation tubes until the tube network disappears. Because of
the percolation structure of a bicontinuous pattern in bulk, the wetting effect is not localized
near the wall and strongly affects the whole sample. Thus, phase separation can be seriously
affected by wetting phenomena especially near the symmetric composition even though a
sample size is macroscopic. This means that we need to exercise special care if we intend to
study bulk phase separation free from surface effects.

4.1. Dynamics of lateral growth of wetting domains: fast-mode kinetics

Here we discuss the initial stage of the wetting droplet formation [38, 39]. This problem was
experimentally studied for a 2D capillary by Wiltzius and Cumming [29]. They found that the
size of the wetting droplet l grows as t3/2. This is the fastest coarsening ever found for phase
separation and thus the phenomena have attracted considerable attention. Nevertheless, the
physical origin of this unusually fast growth of domains is still not clear even now, although
some mechanisms have been proposed and discussed [34, 37, 40–42].
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Hereafter we propose a possible scenario [34,42], although its validity is yet to be checked
carefully. We believe that this fast-mode kinetics is of purely hydrodynamic origin. This is our
basic standpoint. There is a pressure gradient between a bicontinuous tube and its wetting part,
reflecting the difference in transverse curvature of the tube between them. Thus there should
be directional hydrodynamic flow from the tube to the wetting droplet. Since the pressure
gradient between the tube and the wetting layer is ∼σ/a over the distance a, the flux of this
flow is estimated as Q ∼ (σ/η)a2, where η is the viscosity and a is the characteristic size of
the tube.

Provided that the limiting factor as regards the droplet spreading is the supply of the
more wettable phase from the tubes in the bulk by hydrodynamic flow, we get the relation
l dl/dt ∼ Q. Here we assume 2D growth of the wetting disc. This assumption may be valid
for the case of strong wettability and it is supported by the 2D nature of the droplet growth
confirmed experimentally [29,43]. Using Siggia’s growth law for bulk, a ∝ (σ/η)t , we obtain
the relation l ∼ [(σ/η)t]3/2. This is consistent with observation. The prefactor (σ/η)3/2 is
roughly proportional to (2T )3ν , where 2T is the quench depth, ν is the critical exponent for
the correlation length ξ , and ν ∼ 0.63. This dependence of the prefactor on 2T is also found
to be consistent with the experimental results [29, 39, 43].

For a weak-wetting case, the droplet spreading may not be purely two dimensional.
For three-dimensional droplet growth, for instance, we obtain l2 dl/dt ∼ Q. Thus we can
generalize the relation l ∼ [(σ/η)t]3/D , where D is the spatial dimensionality of the wetting
droplet. For hemispherical droplet growth (D = 3), l ∼ t , while for disc-like droplet growth
(D = 2), l ∼ t3/2 (see figure 4). The transitional behaviour for the exponent going from 1 to
3/2 observed by Cumming et al [44] may be explained by the above idea.

Figure 4. A schematic dia-
gram of hydrodynamic coating,
i.e. spreading droplets for D =
3 (a) and D = 2 (b). D is
the dimensionality of the wetting
droplet.

In a real situation, we also have to consider the coupling between tubes. Here we point
out that a similar argument may be applied to the wetting tube instead of the wetting droplet,
as schematically shown in figure 5. There should be growing and decaying tubes, which are
connected to the wetting layers. If the tube thickens with time in the radial direction but does not
grow along the tube axis direction, we again obtain l ∼ [(σ/η)t]3/2 from the same argument.
If the tube grows three dimensionally in both directions, we obtain l ∼ (σ/η)t . This scenario
seems to more naturally explain the in-plane spatial correlation of wetting domains, which
is responsible for the appearance of the scattering peak. Since in the above discussion there
are some assumptions that cannot be justified in a convincing way, we need further studies to
elucidate the relevant mechanism. For example, we do not have a convincing explanation for
the 2D nature of coarsening. At this point, we have to say that this problem is still open.
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Figure 5. A schematic diagram of the growth kinetics near the wetting layer and a possible coupling
between tubes.

4.2. Thickening dynamics of a wetting layer

Next we discuss the thickening dynamics of the wetting layer. It is known that the wetting
layer grows as a logarithmic law [31, 45] or a power law with various exponents ranging
from 0.1 to 1 [26, 34, 37, 45–49]. Here we focus on the late-stage thickening dynamics of the
wetting layer in a fluid mixture [33, 34]. This mechanism should be common to all confined
geometries as long as the inverse of the curvature of the solid surface is much larger than the
radius of the tubes connected to the wetting layer. Once the wetting layer completely covers
the whole surface and becomes homogeneous in a lateral direction, the rate of thickening of
the wetting layer (d/dt)dw should be proportional to the flux from the bicontinuous tubes.
The flux from a single tube Q can be estimated as Q ∼ (σ/η)a2. The number of tubes per
area S is proportional to S/a2. Thus the total flux Qt is proportional to S(σ/η). Since the
thickening of the wetting layer is caused by this flux, S (d/dt)dw ∼ S(σ/η). Therefore, we
obtain the relation dw = kw(σ/η)t , where kw is the proportionality constant. This linear
growth behaviour is consistent with the observation in 1D capillaries, which is demonstrated
in figure 6. The decrease in the slope with decreasing quench depth 2T reflects the decrease
in the interface tension σ with decrease in 2T . Note that σ ∼ (2T )2ν . The linear growth of
the wetting layer thickness was also confirmed by our numerical simulations [50], as will be
shown in section 8.4.

Figure 6. The temporal change in the
wetting layer thickness measured in
the 1D-capillary experiments.
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4.3. The effect of the spatial dimensionality of confinement on wetting

Here we discuss the difference in the late stage of pattern evolution between 1D and 2D
capillaries. For a 1D capillary, the tube radius of the bicontinuous pattern a can never
exceed the capillary tube radius r0, since the domain size cannot exceed r0 in the radial
direction because of the strong geometrical constraint. Thus the complete layer configuration
is always formed first and then the Rayleigh instability leads to a stable bridge (or bamboo-like)
structure [33]. In a 2D capillary, on the other hand, the tube diameter 2a can exceed the spacing
d, since there is no geometrical restriction parallel to the plates. Once 2a becomes larger than
d, the longitudinal curvature of the tube (∼2/d) becomes larger than its transverse curvature
(∼1/a) 1. Thus the pressure in the tube becomes lower than that in the wetting layer. Therefore,
the tube bridging the two walls, whose radius a is larger than d/2, starts to thicken over time by
absorbing the wetting layers. On the other hand, the tube bridging the two walls, whose radius
a is smaller than d/2, is not formed or disappears. An example of such behaviour is shown in
figure 7. The mechanism is schematically illustrated in figure 8(a). In accord with the above
prediction, we found that a 2D disc-like droplet appearing in a 2D capillary, which can keep
growing, always has an initial diameter 2a0 comparable to the thickness d [34], as indicated
in figure 8(b). A similar observation was also made by Bodensohn and Goldburg [32]. The
relation may be universal to all binary liquid mixtures and also to all quench conditions.

Figure 7. Pattern evolution during phase separation of a mixture of polystyrene (PS) (Mw = 96 000)
and diethyl malonate (DEM) confined in a 2D capillary. The composition was 10.7 wt% PS. The
temperature was quenched from 3.7 ◦C to 3.2 ◦C. The critical temperature was 3.5 ◦C. The bright
spot in the upper left corner is a glass bead used as a spacer, whose diameter is 4.9µm. Its diameter
is the same as the spacing d. Note that only the tubes bridging the two glass plates whose diameter
is larger than the spacing can grow further in thickness.

1 In this estimate of the longitudinal curvature of the tube, we assume that the thickness of the wetting layer dw is
much smaller than d. A slightly more rigorous estimate leads to the curvature 2/(d − 2dw).
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Figure 8. (a) A schematic diagram of growing and disappearing droplets (tubes) in a 2D capillary.
(b) The dependence of the threshold radius of a droplet for its growth, 2a0, on the spacing d. The
dashed line is the line of 2a0 = d. The smaller slope compared to this prediction may simply
reflect a geometrical factor, e.g. the finite thickness of the wetting layer. 2a0 increases linearly with
d. Our study indicates that this behaviour is independent of the kind of mixture and universal.

With increasing d , the number of bridges (droplets) that finally remain decreases. This can
be explained by the condition 2a > d becoming more difficult to satisfy for a larger d, since
in a bicontinuous structure the number of percolation paths decreases with increase in d and
further bicontinuous tubes are spontaneously broken by any asymmetry during the coarsening.
The former simply reflects the fact that the number of tubes decreases with coarsening, while
the latter is caused by the asymmetry induced by the formation of wetting layers and also by
the slight composition asymmetry. Thus the morphological evolution in this configuration is
strongly dependent on the gap d . This reflects the fact that there are two relevant length scales
in this problem, namely, the domain size a and the thickness of a liquid film d.

5. Late-stage domain growth in a 2D capillary

5.1. The regime of individual growth of tubes bridging the two wetting layers

Once the diameter 2a exceeds the thickness d, it grows linearly with time until the interaction
between droplets starts to play a role [34]. This linear growth behaviour can be explained
by the hydrodynamic flow from the wetting layer into the 2D disc-like droplet being largely
dominated by the pressure gradient coming from the longitudinal curvature 2/(d − 2dw). In
this approximation, da/dt ∝ (σ/η)g(d, dw) where g(d, dw) is a function of d and the wetting
layer thickness dw. Neglecting the temporal change in dw, we can predict that a grows linearly
with time. This was indeed confirmed experimentally, as shown in figure 9. The slowing down
of the droplet growth in the late stage may be caused either by the temporal change in dw or
by the interdroplet interaction through the wetting layer. The importance of the effects of the
change in dw was recently pointed out by Wang and Composto [10]. Since the amount of
fluid in the wetting layer between neighbouring droplets is finite, droplets cannot absorb the
wetting layer independently in the late stage. In both cases, g(d, dw) becomes a function of
time through the change in dw in this intermediate stage.

5.2. Interdroplet interaction via wetting layers

In the intermediated stage the droplets strongly attract each other by absorbing the wetting
layers and also by the capillary instability of the tube formed between neighbouring droplets
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Figure 9. A plot of the droplet radius a bridging the upper and the lower wetting layer against
time t for PVME/water (7/93) in a 2D capillary (d ∼ 3 µm). Open circles: 33.3 ◦C; filled circles:
34.0 ◦C. The difference in the slope, which should be proportional to σ/η, reflects the difference
in the interface tension σ , which is an increasing function of the quench depth 2T (note that
σ ∼ (2T )2ν ).

[35]. The coarsening behaviour in this stage is shown in figure 10. This interesting behaviour
can be explained as follows. The wetting layers connect neighbouring droplets, which are
composed of the more wettable phase. Thus the bow-shaped nearest sides of the neighbouring
droplets and the upper and lower wetting layers between these droplets form a tube of the less
wettable phase. This situation is shown schematically in figure 11. The droplets are attracted
to each other to reduce the interface energy of this fluid tube. This phenomenon is essentially
the same as the Rayleigh instability in a 1D capillary [33]. The existence of such a tube is
confirmed by the fact that the collision of droplets leaves a small droplet inside the droplet after
coalescence, as shown in figure 10. This droplet is formed by the capillary instability of a fluid
tube between the droplets. Note that the fastest-growing unstable mode has a wavelength of
the order of the diameter of the tube, which roughly determines the size of a trapped droplet.
The mechanism is shown schematically in figure 12.

The behaviour of droplet collision can be analysed on the basis of a Navier–Stokes
equation:

η[∂2v/∂y2 + ∂2v/∂z2] = dP/dx (8)

where v is the flow velocity along x, η is the viscosity, and P is the pressure. As indicated
in figure 11, x is along the tube axis, z is the thickness direction, and y is perpendicular to x
and z. Here we define 2lmin as the minimum interdroplet distance (see figure 11). Thus the
flow velocity v is related to the interface velocity d2lmin/dt as v ∼ (L/2lmin) d2lmin/dt ,
from mass conservation. Reflecting the longitudinal change in the transverse curvature of the
tube, the capillary pressure in the tube roughly varies as σ/2lmin (σ : interface tension between
the two coexisting phases) over the characteristic length along the tube (∼L). Here L can be
estimated by the in-plane radius of the local curvature of the fronts of the attracting droplets.
Thus, dP/dx ∼ σ/(2lmin L). This pressure gradient causes the Poiseuille flow from the neck
to the bulges of the tube. For 2lmin < d , v is estimated from the relation ηv/2l2min ∼ dP/dx
(see equation (8)) as

v ∼ σ 2lmin/(ηL).

Provided that L = kσ 2lmin (kσ : constant), we obtain

2lmin ∼ k−2
σ (σ/η)2t. (9)

Here 2t is the time to the direct collision. That is, 2t = tc − t , where t is the time and tc is
the time of the collision. The linear dependence of L on 2lmin assumed above seems to be
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Figure 10. A coarsening process of droplets interacting via wetting layers. The effective attractive
interaction between droplets induces frequent interdroplet collisions. The system is PS/PVME
(5/5). (a) 855 s, (b) 900 s, (c) 910 s, (d) 920 s, (e) 930 s, (f ) 940 s, (g) 950 s, (h) 980 s, and (i) 990 s
after the temperature quench.

Figure 11. Schematic side and top views
of attracting droplets.

reasonable because (i)2lmin is the only relevant length scale of the problem and further (ii) the
curvature of the deforming droplet front tends to be balanced by the transverse curvature of
the tube (∼1/2lmin) (see figures 10 and 11). For 2lmin > d, on the other hand, v is estimated
from the relation ηv/d2 ∼ dP/dx (see equation (8)) as

v ∼ σd2/(ηL2lmin).

Provided again that L = kσ 2lmin, the following relation is obtained:

2lmin ∼ k−2
σ (σd2/η)1/3 2t1/3. (10)

Thus 2lmin is predicted to be proportional to 2t for 2lmin < d and 2t1/3 for 2lmin > d. This
prediction is consistent with our experimental results [35], as shown in figure 13. Note that
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Figure 12. The mechanism
of formation of a small droplet
from a tube during droplet
coalescence.

the crossover from t1/3-dependence to t-linear dependence occurs around 2lmin ∼ d; more
strictly, 2lmin ∼ (d − 2dw), consistently with our prediction. We can also notice that (i) the
proportionality constants of relations (9) and (10) both increase with the phase-separation
temperature and (ii) they both decrease with increase in the phase-separation time, tps . The
former can be explained by the increase of σ with increasing temperature distance from the
critical temperature, 2T . We speculate that the latter is due to the fact that kσ is an increasing
function of the domain size: a larger domain is more difficult to deform to make a large local
curvature of the order of 1/2lmin around the colliding point. The relevance of this argument
should be checked more carefully in the future. Finally, it should be noted that there is no
motion of the centre of mass of the droplets prior to collision, which indicates that this collision
process is purely driven by the capillary instability of the tube of the non-wettable phase, and
not by translational diffusional motion of droplets.

5.3. Change in the apparent 2D composition symmetry: temporal decrease in the total
volume of wetting fluid layers

In a nearly symmetric binary mixture confined in a 2D capillary, the morphology transforms
from a 3D interconnected pattern to a 2D droplet pattern and back to a 2D interconnected
pattern [35] (see figure 3(c)). This unusual behaviour can be explained from the static aspect
as follows: the composition symmetry initially leads to the bicontinuous pattern in bulk. Then
the in-plane symmetry of the order parameter is broken by the existence of the wetting layer.
This leads to the quasi-2D droplet morphology. Finally, the in-plane symmetry approaches the
bulk composition symmetry, since the wetting layers are absorbed into the domains bridging
the glass plates. This is supported by the increase in the total droplet area with tps . Thus
the morphology transforms from a droplet pattern to an interconnected pattern again. Such a
temporal change in the total droplet area was reported by Bodensohn and Goldburg [32].

Next we discuss the second morphological transition on the basis of the kinetics of the
elementary process. During phase separation, the deformation of a droplet shape is generally
caused by interdroplet coalescences whose interval is characterized by the collision interval
(τc). The resulting shape relaxation process is characterized by the relaxation time τσ . The
wetting effect drastically shortens τc compared to that for the usual case without wetting since
(1) there is the wetting-induced attractive interaction as already described and (2) the average
interdroplet distance becomes smaller with the phase-separation time, reflecting the increase
in the in-plane symmetry. Further, the attractive interaction prevents the free shape relaxation
and thus τσ is increased. The rate of the wetting-induced coarsening is mainly determined by
the wetting layer and not strongly correlated with the droplet size. On the other hand, the shape
relaxation time is determined by the surface/volume ratio and is proportional to the domain
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Figure 13. Plots of 2lmin against 2t for three
phase-separation temperatures. 2t is the time
to a direct contact upon collision. Top: 175 ◦C;
middle: 180 ◦C; bottom: 190 ◦C. The grey bar
indicates the location of 2lmin comparable to
the gap d. Note that around 2lmin = d the
transition from 2t1/3 to 2t-linear dependence
of2lmin takes place. tps is the phase-separation
time.

size R. Accordingly, the shape relaxation time increases with the phase-separation time and
becomes longer than the collision interval at a certain time. This crossover between the two
characteristic times is also responsible for the morphological transformation from an isolated
to an interconnected structure.

6. Wetting-induced double phase separation

Next we consider unusual phenomena of double phase separation found in various fluid
mixtures.
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6.1. Experimental evidence

First we give the experimental evidence for wetting-induced double phase separation [38,39].
Figure 14 shows the pattern evolution of the PVME/water (7/93) mixture confined in a 1D
capillary. Surprisingly, retarded secondary phase separation was observed inside the macro-
scopically separated phases. This can be noticed around 1 s after the quench from the fact that
the two phases look cloudy. Then the droplet pattern becomes visible around 20 s after the
quench. This unusual double phase separation (DPS) was not observed for a shallow quench
(2T � 0.6 K) (see figure 3 in reference [39]). DPS looks similar to the pattern caused by a
temperature double quench [51–53]. The same behaviour of double phase separation was also
observed for a 2D capillary in a few binary mixtures, which indicates the general nature of this
phenomenon.

Figure 14. Phase separation in a 1D capillary for PVME/water (7/93). The photographs correspond
to 0.3 s, 0.8 s, 1.3 s, 1.8 s, 3.8 s (left column), 22.3 s, 23.8 s, 28.8 s, 88.8 s, and 479 s (right column)
from top to bottom, respectively, after the temperature jump from 32.5 ◦C to 34.0 ◦C. The bar
corresponds to 200 µm. Secondary phase separation can be clearly seen.

We also found that DPS is strongly suppressed by the strong spatial confinement [38,39].
For a thick sample, DPS was clearly observed, while for a thin sample (d < 1 µm), it was not
observed even though the other experimental conditions were the same. This fact indicates the
importance of bicontinuous phase separation in bulk. It should be noted that for any mixtures,
DPS was observed only near the symmetric composition, and even for a deep quench, it was
never observed in asymmetric compositions, where droplet phase separation occurs.

All these facts strongly suggest that quick hydrodynamic coarsening accompanied by
bicontinuous phase separation plays a crucial role in this phenomenon.

6.2. Possible physical mechanisms of double phase separation

6.2.1. The effect of a finite quench rate. The simplest explanation of the observed phenomena
may be that double phase separation is caused by a non-ideality of the temperature quench,
namely, a finite quench rate [38, 39], as in the case of a double temperature quench [51–53].
Phase separation starts during the temperature quench process and enters into a rather late
stage quickly. A further temperature change makes the two macroscopic phases metastable or
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unstable and induces secondary phase separation. However, the following facts seem not to be
fully explained by this mechanism. This phenomenon was observed neither for bicontinuous
phase separation in a very thin sample nor for droplet phase separation. On noting that the
thermal conduction is primarily limited by the glass wall, it is rather difficult to imagine how
a slight change in sample thickness can affect the overall quench rate significantly. Note that
the thickness of the glass walls is ∼150 µm while that of the sample is a few µm. Of course,
however, further experimental studies are still necessary to completely rule out this possibility.

6.2.2. The interface quench effect. Here we propose another possible ‘physical’ mechanism
for DPS, which may be conceptually important for the understanding of hydrodynamic effects.
In all the mixtures studied, bicontinuous phase separation was observed in the initial stage (see
the first photographs in figure 14) because of the composition symmetry. In bicontinuous phase
separation, the total interface area of the system is drastically reduced within a short time by
the hydrodynamic coarsening originating from the coupling between the concentration and the
velocity fields. According to Siggia’s mechanism [13], the interface area per unit volume s is
estimated to decrease as s ∝ [(σ/η)t]−1, where σ is the interface tension and η is the viscosity.
Note that in figure 14 the area of the interface between the two phases decreases quite rapidly
with time and after only 2 s it has almost disappeared. We call this quick reduction of the
interface area ‘interface quench’. Since the hydrodynamic interface motion is much faster
than the concentration diffusion, the hydrodynamic flow due to the capillary instability causes
only the geometrical coarsening and does not accompany the concentration change. Thus
the system cannot respond to the rapid decrease in the interface energy; that is, the local
equilibrium cannot be established. This causes a kind of double-quench effect, which we
call interface quench. In all the previous studies [1, 2] local equilibrium has been assumed
in the hydrodynamic regime, but this may not be correct in the exact sense, especially under
surface fields.

Here we mention the difference in coarsening dynamics of a symmetric mixture between
phase separation in a confined geometry and bulk phase separation. For both cases the
coarsening dynamics is dominated by hydrodynamic tube instability [33]. The difference
in the prefactor k in the relation R = k(σ/η)t may be the only difference [33]. Here
k = kb or kw for bulk and wetting phase separation, respectively. For phase separation under
the influence of wetting, kw is roughly estimated as ∼0.1 from Poiseuille’s formula. For bulk
phase separation, on the other hand, the tube flow is essentially caused by the fluctuations of the
interface curvature. San Miguel et al [54] theoretically estimated kb as 0.04 for two-phase fluids
having similar viscosity, which was experimentally supported [15]. If we employ kb ∼ 0.04,
the difference between kb and kw is probably within one order of magnitude. However, the
anisotropic ordering for wetting phase separation might accelerate the reduction of the interface
area further. Thus, we expect the effect of interface quench to be more significant for phase
separation under geometrical confinement than for that in bulk.

To check the relevance of the above scenario of DPS, we have to clarify whether the
concentration diffusion can follow this quick change in the local equilibrium concentration or
not. The time required to hydrodynamically form the macroscopic phase having a domain size
R is estimated as τh ∼ Rη/(kσ). On the other hand, the characteristic diffusion time for the
domain sizeR is given by τD ∼ R2/D, whereD is the diffusion constant andD = kBT /(5πηξ)
(kB : Boltzmann’s constant). Thus the ratio between τh and τD is given by τh/τD = Dη/(kσR).
From the two-scale-factor universality, σ = AσkBT /ξ

2, where Aσ is the universal constant
in the critical regime and Aσ ∼ 0.2 in 3D [1]. Using this relation and the expression for D,
we obtain the relation τh/τD ∼ ξ/(5πAσkR) ∼ ξ/(3kR). For τh < τD , the concentration
is different from its equilibrium value and local equilibrium cannot be established. Thus the



Interplay between wetting and phase separation in binary fluid mixtures 4659

interface quench is initiated around τh/τD ∼ 1. For wetting phase separation (kw ∼ 0.1),
Rt ∼ 3ξ (Rt : the transient domain size when the interface quench is initiated). For bulk phase
separation (kb ∼ 0.04), on the other hand, we obtain Rt ∼ 10ξ or τt ∼ 100 (τt = t/τξ , where
τξ = ξ 2/D) from the condition τh/τD ∼ 1.

All the above estimations are based on the universal behaviour in the critical regime. In
the mean-field regime, however, σ/η can be larger than that in the critical regime. Thus, we
expect stronger effects of interface quench for the deep temperature quench into the mean-field
regime. This consideration leads to an interesting possibility that double phase separation may
be induced spontaneously even in bulk if we deeply quench a fluid mixture into the mean-
field regime.

The validity of this concept of interface quench was checked by numerical simulations
of the phase separation of a 2D fluid mixture [55]. For the case of high fluidity, it was
demonstrated that the double phase separation is indeed ‘spontaneously’ induced by the
interface quench effect.

The beginning of the interface quench characterized by these values of Rt/ξ and τt is
consistent with the crossover from the slow diffusion growth to the fast hydrodynamic growth
in the scaled plots of 2πR/ξ against t/τξ [38,39]. The interface quench may bring the system
into a new non-equilibrium (unstable or metastable) state and thus cause the retarded secondary
phase separation. The situation is shown schematically in figure 15. Our interpretation of the
phenomenon is consistent with the light scattering data given by Wiltzius and Cumming [29],
which indicates that (1) the secondary phase separation (in our notation) has the growth law
R ∼ t1/3, unique to the droplet pattern, and (2) it starts to appear just after the hydrodynamic
process (the fast mode in their notation [29]) starts to play a dominant role in coarsening
(around τh = τD) (see figure 13 in reference [43]).

Further studies on the possible effects of interface quench from experimental, theoretical,
and numerical viewpoints are highly desirable.

6.3. History-preserving domain growth

Here we briefly mention an interesting example of pattern evolution induced by double phase
separation. In contrast to the general phenomenology of liquid–liquid phase separation in
which the memory of the structure is continuously lost with time upon coarsening, we found
an unusual phase-separation morphology that memorizes the full history of pattern evolution
for a binary liquid mixture [56]. The spatial distribution of small solid-like droplets produced
by wetting-induced double phase separation records the contact line of colliding droplets. The

Figure 15. A schematic diagram of the coarsening
process of DPS.
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solid nature of the droplets is induced by the high glass-transition temperature of a less wettable
phase. The collision history preserved in the trajectory pattern of each droplet demonstrates a
strong space-time correlation in the structural development during phase separation of nearly
symmetric mixtures. An example is shown in figure 16.

Figure 16. History-preserving droplet phase separation observed in an OCL/OS (3/7) mixture.
The temperature was quenched from 140 ◦C to 60 ◦C at t = 0 s. (a) 950 s, (b) 1010 s, (c) 1028 s,
(d) 1113 s, (e) 1122 s, and (f ) 1196 s after the temperature quench.

7. Effects of preferential wetting of solid particles

In the above, we discuss the effects of preferential wetting of solid planar or cylindrical
substrates on phase separation. It is also interesting to consider the effects of wetting of
particles [57]. This problem is of practical importance in the field of composite material,
e.g. polymer blends with filler particles [57, 58]. In particular, if solid particles are mobile,
their motion can be involved in the pattern-evolution process as a result of the dynamic coupling
between wetting and phase separation. Here we consider binary polymer mixtures containing
solid spherical particles. As an ideal system, we choose monodisperse glass spheres as the
solid particles and study the pattern evolution caused by phase separation. The cooperative
effect of phase separation and dynamic wetting leads to an interesting pattern evolution in the
system. For numerical studies of this problem, see reference [58] and references therein.

7.1. Geometrical configuration and experimental details

First we have to specify the geometrical configuration which we are going to consider. Although
there can be a variety of configurations, we focus here just on the experimental configuration
which we employed in our previous experiments [57]. Two grades of monodisperse spherical
glass particles were used: GP1 having a diameter of 3.786 ± 0.027 µm, and GP2 with a
diameter of 7.088 ± 0.050 µm. The thickness of the sample d was controlled by using GP2
as a spacer. In one series of experiments, we used glass particles of only one type (GP2),
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which acted as spacers and also as immobile fillers. These particles cannot move because of
the large friction against the glass plates. In the other series of experiments we used a small
number of larger-size GP2 spheres as spacers and we also put in a large number of small-size
GP1 spheres; in this case, the smaller particles (GP1), which can be regarded as fillers, can
move freely inside the quasi-2D sample. We call the former the ‘immobile particle case’ and
the latter the ‘mobile particle case’. We believe that the essential features will not be affected
by the details of experimental conditions.

7.2. Basic principle: energetic aspect

First we discuss the static energetic aspect of the problem, assuming the above geometrical
configuration. The total free energy of the system per unit volume can be given by

F = 4πa2[γαnα + γβnβ] +
1

d

[
γα

(
%α +

4

3
πR3

GPnα

)
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(
%β +

4

3
πR3

GPnβ

)]
+ σf (d).

(11)

Here the α- and β-phases are the OCL-rich and OS-rich phases, respectively, and nα and nβ
are the number of the particles per unit volume in the α- and β-phases, respectively. %α and
%β are, respectively, the volume fractions of the α- and β-phases normalized by the total
volume of the sample including spheres. Thus,%α +%β +%GP = 1, where%GP is the volume
fraction of glass particles. RGP is the radius of the glass spheres. γα and γβ are the energies
of interaction between the glass and the α- and β-phases, respectively. σ is the interfacial
tension between the α- and β-phases. f (d) is the total area of the interface between the α-
and β-phases per unit volume. The first two terms in the above free energy are related to the
wettability of the glass particles, the next two terms to the wettability of the glass plates, and
the last term to the interfacial energy between the α- and β-phases. Here it should be noted
that the wettability of the glass plates plays little role in the late-stage phase separation after
the formation of bridges between the plates. All the interesting effects of glass particles on
phase separation originate from the interplay between the first two terms and the last term in
the right-hand side of equation (11).

7.3. Effects of particle mobility on pattern evolution

Here we consider the effect of particle mobility on the pattern evolution under the influence
of wetting of particles. After the formation of a sharp interface, the wetting layers are quickly
formed on the surfaces of both glass spheres and glass plates by the hydrodynamic process
unique to nearly symmetric binary mixtures [33–35]. This wetting layer forms an inter-
connected structure, so the particles are bridged by it. Once the droplets are bridged by the
more wettable phase, the strong attractive interaction acts between the droplets to reduce the
α–β interface area. This interaction is very long range because of the interconnected nature
of the wetting layer. Thus, the phase-separation pattern evolves such that the more wettable
phase includes all the particles. When this attractive force is weaker than the particle trapping
force, particles cannot move (an immobile particle case), and vice versa (a mobile particle
case). Below we consider the pattern evolution for both immobile and mobile particle cases.

7.3.1. Wetting of immobile particles. In this case, the more wettable OCL-rich phase forms
domains around the glass particles to reduce the solid–liquid interfacial energy, as shown in
figure 17. Since the glass spheres are hard to move, only those glass particles that are close
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enough can be bridged by the OCL-rich phase. The coarsening process completely stops in
this rather early stage, because domains are pinned by the fixed glass particles.

For the case of immobile particles, the final structure is determined by the competition
between 2γ (=γβ − γα) and σ . That is, inclusion of the particle into the α-phase, which
is driven by 2γ , competes with the formation of large domains, which is driven by σ . This
leads to the final pattern composed of small domains, where most of the particles are included
in the α-phase, even though there remains a rather large area of interface between the α- and
β-phases. The final size of the domain is determined by the number density of particles, their
spatial distribution, and the composition symmetry of the mixture. In addition to the energetic
argument, consideration of the dynamics also leads to the conclusion that coarsening stops
at a finite size. Coarsening of the droplet pattern is usually dominated by the evaporation–
condensation and/or Brownian-coagulation mechanisms [1,13]. In our case, however, neither

Figure 17. Phase separation in OCL/OS (3/7) with immobile glass beads. d = 7.1 µm. The
temperature was quenched from 140 ◦C to 100 ◦C. (a) 16 s, (b) 60 s, (c) 120 s, (d) 300 s, (e) 600 s,
and (f ) 1200 s. The bar corresponds to 100 µm. The number density ρn of the GP1 spheres is
∼1.2 × 106 cm−2: their volume loading fraction %GP is ∼9% and their projected-area loading
fraction SGP is ∼14%.
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of these mechanisms can act efficiently. Droplet motion is prevented by the pinning effect
of the fixed glass spheres (a strong spatial pinning effect) and thus the Brownian-coagulation
mechanism does not work after the formation of a metastable domain structure. For a domain
to move, it has to dewet the particles included in it. The motion of a droplet, which requires
the dewetting of N particles, has to overcome an energy barrier of 4πR2

GPN 2γ . This large
energy barrier is strong enough to prevent the thermal motion of the droplet. Further, the local
curvature of a domain is not correlated with the domain size and it is determined by the spatial
distribution of the glass particles; thus the evaporation–condensation mechanism does not work
either. These considerations lead to the conclusion that after all glass particles are bridged by
the more wettable α-phase droplets, the droplet pattern is stabilized for both static and kinetic
reasons. Thus, the coarsening, even if it occurs, is extremely slow. We need further studies to
answer on a quantitative level the question of what determines the characteristic length of the
final domain structures.

7.3.2. Wetting of mobile particles. Next we consider the case of mobile particles. The system
also tries to reduce the free energy by lowering the energetic factors relating to 2γ and σ .
The former leads to inclusion of the glass particles into the α-phase domains, while the latter
causes coarsening of the domains. Although this feature is the same as in the case of immobile
particles, the mobility of particles allows domains to continuously coarsen to reduce the α–β
interfacial energy. The pattern evolution can then be classified into the following three cases:
(1) %α � %GP , (2) %α ∼ %GP , and (3) %α � %GP (1/φpack − 1) (φpack: the closest-packing
volume fraction).

For case (1), the inclusion of the particles occurs first, and then the domains gradually
grow by the wetting-layer-induced attractive interaction mechanism as well as by the Brownian-
coagulation and evaporation–condensation mechanisms. Figure 18 corresponds to such a case.
In contrast to the case of immobile particles, all the glass particles are completely included
inside the α-phase droplet, or the droplet attains a spherical shape, because of their mobility.
Thus the curvature is directly determined by the droplet size. However, the coarsening rate is
slow compared to that in the case without particles, where domains coarsen as a ∼ t1/3 (a: the
characteristic domain size) [20, 21]. Glass particles may reduce the translational motion of a
droplet since the local velocity difference between the fluid inside the droplet and the spheres
probably causes additional friction opposing the droplet motion (a weak spatial pinning effect
of particles). However, it is not clear how significantly this effect slows down coarsening, and
thus further studies are highly desirable.

For case (2), the packing density of the glass particles inside the α-phase becomes very
high and the glass particles locally form an ordered structure because of their geometrical
confinement, which is a result of minimization of the 2γ interaction. The ordered structure
prevents the domains from deforming and coarsening further since there is a high potential
barrier to deforming the ordered hexagonal packing of the glass spheres. This spontaneous
pinning effect due to particle ordering (a shape pinning effect of ordered particles) slows down
the coarsening of domains (see figure 19). In the enlarged view shown in figure 20, we can
clearly see the ordered structures of particles confined in the more wettable domains. Between
cases (1) and (2), the coarsening rate becomes maximal (a ∼ t1/3) [57] because the increase
of %GP has two competing factors:

(i) The increase of %GP induces the transformation of the phase-separation pattern from
a droplet one to a bicontinuous one. This accelerates the domain coarsening since a
bicontinuous pattern makes quick hydrodynamic coarsening possible.

(ii) On the other hand, the further increase of %GP induces shape pinning effects as a result
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Figure 18. Phase separation in OCL/OS (3/7) with mobile glass beads. %GP ∼ 3.2% and
SGP ∼ 9%. d = 7.1 µm. The temperature was quenched from 140 ◦C to 60 ◦C. (a) 0 s, (b) 10 s,
(c) 30 s, (d) 150 s, (e) 390 s, and (f ) 1710 s. The bar corresponds to 100 µm.

of the ordering of particles confined in the domain.

The competition of these two opposite effects naturally explains why the coarsening rate has
a maximum as a function of %GP .

For a high particle concentration (see figure 21), the interface of the domain becomes
rather rough (not smooth) and the shape relaxation of the domain due to interface tension
becomes ineffective due to the effects of strong confinement on particles and the resulting
close packing. The coarsening becomes very slow for this case.

For case (3), there may be coexistence of closely packed glass particles that are included
in the α-phase with particles that cannot be included in it. This is simply because there is no
way for all particles to be included in the α-phase. Cases (1) and (2) and case (3) may be
named ‘complete wetting’ and ‘partial wetting’, respectively, although the physical origin of
the appearance of the two states is essentially different from that for a planar substrate. This
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Figure 19. Phase separation in OCL/OS (3/7) with mobile glass beads. d = 7.1µm. %GP ∼ 5.2%
and SGP ∼ 15%. The temperature was quenched from 140 ◦C to 60 ◦C. (a) 6 s, (b) 10 s, (c) 20 s,
(d) 60 s, (e) 120 s, (f ) 300 s, (g) 600 s, and (h) 1660 s. The bar corresponds to 100 µm.
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Figure 20. Phase separation in OCL/OS (3/7) with mobile
glass beads observed with a higher magnification. The
condition is the same as that for figure 19. Here we can
see individual glass particles clearly.

may be an example of a geometrically induced complete–partial wetting transition.
Since most of the glass particles are included in the α-phase except in the case where

%GP � %α , the apparent volume fraction of the α-phase becomes %α + %GP . Thus the
bicontinuous structure appears when %α + %GP ∼ 1/2. The morphology can be changed
by controlling %GP , even for a fixed ratio between the α- and β-phases. Such behaviour is
actually observed in figures 18–21.

7.4. Potential applications

From an applications viewpoint, this study strongly indicates that it is possible to intentionally
control the final domain size in phase separation by means of the spatial arrangement of a fixed
solid phase, and also to control the final morphology by inducing the spontaneous pinning effect
with addition of a certain amount of mobile solid particles. These ideas may be applied to the
physical design of composite materials including polymer alloys and polymer-dispersed liquid-
crystal displays. By changing the volume fraction of particles, we can control the apparent
symmetry of the composition—namely, whether the final pattern becomes bicontinuous or
isolated. The selective inclusion of solid particles into the more wettable phase and the resulting
particle ordering may be universal to all binary liquid mixtures including solid particles,
irrespective of experimental conditions such as particle shape, particle size, their distribution,
and film thickness. So far the structures of these mixtures have been considered mainly from
the static energetic standpoint, but our study indicates the importance of the dynamic aspect.

Finally, we consider some interesting physical problems associated with this spontaneous
inclusion of particles into the more wettable phase. In the above we consider the case of spher-
ical particles without long-range interactions. In this case, the spatial confinement may induce
the crystallization or vitrification of particles. If the charged colloidal particles are confined in
an aqueous droplet, we may realize the soft crystallization of these particles. The same idea
can be applied to rods and plates. Liquid-crystal ordering to nematic and smectic phases is
expected for such cases. Furthermore, the following problem is also quite interesting. What
happens when we mix two types of particle, one of which favours the A component while the
other favours the B component, into a mixture of A and B, and let the mixture phase-separate?
For a dilute particle concentration, we expect the perfect partitioning of particles into the two
phases. This may open up a new way of achieving particle separation. For a higher parti-
cle concentration, the situation is much more complicated due to the slow dynamics induced
by the high packing density due to strong confinement, which prevents the wetting-induced
spontaneous partitioning of particles. This kind of problem should be studied in the near future.
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Figure 21. Phase separation in OCL/OS (3/7) with mobile glass beads. d = 7.1µm. %GP ∼ 19%
and SGP ∼ 53%. The temperature was quenched from 140 ◦C to 60 ◦C. (a) 16 s, (b) 20 s, (c) 30 s,
(d) 50 s, (e) 120 s, (f ) 600 s, (g) 2100 s, and (h) 3180 s. The bar corresponds to 100 µm.
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8. Numerical simulations

Numerical simulation is one of the most powerful ways to study phase separation under the
influence of surface fields (see references [7, 8] and references therein). The formation of
the composition wave in surface-directed spinodal decomposition has been particularly well
studied. Here we check the validity of the mechanisms proposed above by using three-
dimensional (3D) numerical simulations of fluid phase separation under the influence of
surface fields. Although there are some interesting studies on two-dimensional (2D) fluid phase
separation under wetting effects [41,47], from the case of bulk phase separation the behaviour
in 3D [13] is expected to even be qualitatively different from that in 2D [54]. Hereafter we
explain the results of our numerical simulations [50], focusing on the roles of hydrodynamics.
Below, we do not consider the effects of wetting of particles on phase separation. For such
simulation studies, see reference [58] and references therein.

8.1. Simulation methods

Here we limit our interest to a symmetric [50:50] mixture of A and B. The solid surface that
favours A more than B is introduced at z = 0 by means of fs(φ) with a = b = −1 (see
equation (7)), which corresponds to a ‘complete wetting’ condition [3]. Here positive φ means
A-rich phase. The scaled versions of equations (1), (2), and (7) are solved by the Euler method
under the incompressibility condition ∇ · V = 0 with the boundary conditions Vz = 0 and
∂µ/∂z = 0 at z = 0 and with periodic boundary conditions along the x- and y-directions. The
system size was 64 × 64 × 64 for 3D.

We choose the grid size 2x = 2y = 2z = 1 and the time step 2t = 0.01 to ensure
numerical stability. We do not use the steady-state approximation (∂V /∂t = 0) to handle
the non-periodic boundary condition imposed by the wall. Instead, the velocity fields are
calculated in real space by solving

∂V /∂t =  F − ∇P +"∇2V .

We calculate  F − ∇P by means of an inverse Fourier transformation of Dq ·  Fq , where
Dq = I − qq/q2. (Note that ∇ · ( F − ∇P) = 0 since ∇ · V = 0.) Random noises of φ
(10−3 in amplitude) are introduced only at t = 0, while velocity noises are not introduced at all.

8.2. Evolution of the pattern and flow fields

Figure 22 shows the overall pattern evolution during spinodal decomposition under the surface
fields of a wall set at the bottom (z = 0). In this figure, we display an interface of φ = 0. It
should be noted that for t � 40 a sharp interface has not yet formed, although the figure gives
us the impression of the existence of a sharp interface. The apparent multi-layer structure
near the interface is not real, but just reflects the composition wave. Initially, the composition
wave, or the composition oscillation along the z-direction, is observed near the wall, as is
well known [6–8, 26, 28, 37, 45, 46, 48]. Then, there occur sequentially the destruction of the
composition wave, the formation of a wetting layer of the A-rich phase, and its thickening.
We can clearly see that bicontinuous tubes are connected directly to the wetting layer.

In section 4 we proposed that the hydrodynamic pumping of the more wettable phase into
the wetting layer induces the thickening of the wetting layer. The existence of such a directional
flow into the wetting layer is confirmed by figure 23, which shows the flow fields along the
z-direction in a horizontal view. It should be noted that this flow spreads on the wetting layer,
which causes the radial thickening of a part of a fluid tube connected to the wetting layer. This
leads to the faster coarsening near the wetting layer, as will be discussed in section 8.5. All
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Figure 22. 3D pattern evolution during spinodal decomposition under the influence of wetting of
the solid wall at the bottom (z = 0). Here  = 10 and " = 1.

these effects are due to the pressure in fluid tubes of a bulk bicontinuous structure being higher
than that in a wetting layer by ∼σ/atube (atube: the radius of the fluid tubes) [33, 34, 37].

Figure 23. Left: flow fields at t = 80 near the wall in an x–y plane (z = 12) parallel to the wall.
The white dotted curves indicate the domain or tube interface. The contrast of the greyscale image
represents Vz: white means flow toward the wall, while black means flow in the opposite direction.
Here  = 10 and " = 1. Right: a schematic diagram showing a cross-sectional view in the x–z
plane.

8.3. Transition from a diffusion to a hydrodynamic regime

Here we discuss (i) the formation of a composition wave, (ii) its disappearance, and (iii) the
thickening dynamics of a wetting layer. As can be seen clearly in figure 22, a composition
wave is first formed near the surface. This process is dominated by the diffusion process.
Note that hydrodynamic effects are very weak since the sharp interface has not formed at
this stage. The appearance of the composition wave near the surface is a direct consequence
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of the symmetry-breaking surface fields. Its physical mechanism has already been discussed
intensively [6–8, 26, 28, 37, 45, 46, 48]. Thus, we do not repeat the discussion here.

Later on, the composition wave is gradually destroyed by the growing bulk composition
fluctuations that are basically isotropic. Since hydrodynamic effects produce the material flow
toward the wall, this destruction dynamics of the composition wave is significantly accelerated
for a fluid system compared to a solid system [50]. As the composition difference between the
two phases 2φ increases and the interface becomes sharper with time, the average velocity
of the hydrodynamic flow increases, following the relation |v| = v ∼ (2φ)2 [55]. The
hydrodynamic flow from the bulk to the higher-order layers destabilizes the layer structures.
Accordingly, the higher-order layers are sequentially destroyed one by one from t ∼ 30,
and eventually a single ‘wetting layer’ is formed around t ∼ 70 (see figure 22). Then the
hydrodynamic transport of the more wettable phase via fluid tubes becomes a dominant process
of the thickening of the wetting layer and the thickness starts to increase linearly with time by
a ‘hydrodynamic pumping’ mechanism [33, 34, 37–39]. It should be noted that bicontinuous
fluid tubes are always connected directly and perpendicularly to the surface wetting layer in
the late stage (see figure 22). In other words, there is local orientational order in the tube
direction near the wall. This destruction of a composition wave and the resulting formation of
a single wetting layer are required for the switching of the thickening mechanism of a wetting
layer from a diffusional to a hydrodynamic one.

8.4. Thickening kinetics of a wetting layer

The next step is the hydrodynamic thickening of the wetting layer. Figure 24 shows the temporal
change in the wetting layer thicknessdw(t) for both solid and fluid mixtures for" = 1. For solid
mixtures the wetting layer grows as dw ∼ t1/3 after the initial transient rapid growth of a wetting
layer, which depends on surface parameters (a, b), while for fluid mixtures it initially follows
the behaviour of solid mixtures, but later grows as dw = k(t − tc). Here tc is the onset time of
hydrodynamic effects, at which |v| in bulk reaches its stationary value of |v| ∼ σ/η [13]. In
accord with this, k was found to be proportional to  /" (∝σ/η). This late-stage linear growth
is quite consistent with the experimental observation [34, 59] and the theoretical prediction
(dw ∼ (σ/η)t) [34, 37–39]. The value of k is estimated to be ∼0.1, assuming that the fluidity
parameter Rf =  /" is about 10 in the critical regime. This is also consistent with our
previous rough estimation. This confirms the validity of our previous scaling argument. The
deviation from the t-linear law for dw > 15 may be due to the finite-size effects.

8.5. Fast lateral coarsening of wetting domains near the wetting layer

Here we demonstrate that the coarsening in a lateral direction is faster near the wetting layer than
in the bulk, which might be related to the unusually fast coarsening discussed in section 4.1 [29].
In figure 25, we can clearly see that the domain coarsening near the wetting layer is faster than
that in bulk. The coarsening in bulk is well described by 〈q〉 ∼ t−1 for t � tc (=45), which
is typical of 3D spinodal decomposition of fluid mixtures. Note that hydrodynamic transport
exceeds diffusional transport for t � tc (see figure 26). On the other hand, the fast domain
coarsening near the wall can be approximated by 〈q〉 ∼ t−3/2. This faster coarsening near the
surface is suggestive of the physical origin of the fast-mode kinetics (〈q〉 ∼ t−3/2) observed
by Wiltzius and Cumming [29]; that is, the hydrodynamic pumping mechanism should be
responsible for the fast-mode kinetics [38, 39].

The onset of this fast coarsening near the surface (t ∼ 100) coincides well with the time at
which the wetting layer starts to thicken because of hydrodynamic effects (see figure 24). Thus,
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Figure 24. Temporal change in
the thickness l of a wetting layer
for a solid model ( = 0) and a
fluid model ( 	= 0). Here " = 1.
The curves aredw = 2.43+0.587t1/3

and dw = 0.0120( /")(t − tc).

this may be regarded as the process of ‘hydrodynamic coating’ or ‘hydrodynamic spreading’
of the more wettable phase. This result seems to be consistent with our scenario, which was
explained in section 4.1. However, the power-law regime is too short for a conclusive argument
and the question of whether it is transient or really asymptotic also remains as a future problem.
It is also not clear whether this can naturally explain the observed structure factor or not. Thus,
further studies are still required for the unambiguous determination of the physical origin of
this fast-growth mode.

8.6. Evidence of the interface quench effect

Here we check the validity of a scenario for double phase separation in which the hydrodynamic
thickening of the wetting layer is too quick for a diffusion process to follow and this retardation
of diffusion brings the system out of equilibrium [38,39]. To see this effect, we plot in figure 26
the diffusion flux |∇µ| in bulk and that in the wetting layer, together with the hydrodynamic

Figure 25. Time development of 〈q(z)〉. The lateral coarsening near the wall is considerably faster
than that in bulk. Here  = 10 and " = 1.
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Figure 26. Temporal change in the diffusion flux in the wetting layer and in the bulk together with
the growth of the hydrodynamic flux in the bulk. Here  = 10 and " = 1. After t = 30, there is
excess diffusion in the wetting layer for a fluid mixture, which indicates that the diffusion process
cannot follow the quick hydrodynamic coarsening process.

flux |φv|. For a solid mixture, |∇µ| in the wetting layer monotonically decreases with time,
while for a fluid mixture it initially decreases with time, but starts to increase around t ∼ 30.
At this time, the hydrodynamic flow from the bulk to the higher-order layers is initiated, as
described before, and it also affects the primary wetting layer because of its long-range nature.
Since diffusion cannot follow this quick hydrodynamic process, the wetting layer starts to
become an out-of-equilibrium one, which enhances the diffusion flux in the wetting layer for
t > 70. The absence of such effects in a solid system (model B [11]), which is confirmed by our
simulation (see figure 26), clearly indicates that this is not due to the surface-potential effects,
but due to the hydrodynamic effects. This retardation of the diffusion from rapid hydrodynamic
coarsening may even make the phase-separated phases metastable or unstable again and lead
to a phenomenon of drastic ‘double phase separation’ [38, 39, 55], as discussed before.

In different simulations in two dimensions without surface effects, we confirm that the
quick hydrodynamic coarsening does indeed cause spontaneous double phase separation for a
case of high fluidity. Although the fluidity is a universal, uncontrollable parameter in the
critical regime in 3D, it may become large in the mean-field regime. This suggests the
possibility of double phase separation even in bulk for a very deep quench. The fluidity
can also effectively become large under the surface effects. Further studies are necessary to
understand the phenomenon of double phase separation.

9. Summary

In summary, we have discussed the universal features of wetting dynamics unique to a
phase-separating binary fluid mixture interacting with solid surfaces, focusing on the roles
of hydrodynamics. It was demonstrated that the wetting layer formation in bicontinuous phase
separation is strongly dependent on the spatial dimensionality of the geometrical constraint.
The hydrodynamic coarsening unique to bicontinuous phase separation delocalizes the wetting
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effects and drastically accelerates the wetting dynamics. Thus the macroscopic wetting
structure is formed within a short time. A possible mechanism for the fast-mode kinetics
was also suggested, although we need further studies for a conclusive argument.

Further, we discussed double phase separation (DPS), which was found in confined
symmetric binary mixtures. This phenomenon may be universal to all confined symmetric
binary mixtures. We demonstrated that this unusual phenomenon may be caused by the
interface quench effect unique to bicontinuous phase separation. We also suggested a poss-
ibility that DPS might be observed even for bulk phase separation under deep quench conditions,
where the mean-field picture holds and the fluidity is no longer a universal constant. Effects of
preferential wetting of mobile and immobile particles by one component of a phase-separating
fluid mixture were also discussed.

The problem of the solid–fluid interaction and its effects on self-organization of a fluid
mixture is quite important not only from the fundamental viewpoint, but also from the
applications viewpoint. In this article, we do not discuss the wetting effects on a thin film with
a free surface [9,10], the wetting on a patterned surface, and the interplay between wetting and
viscoelastic phase separation [60], which are quite important in technological applications. We
stress that the basic understanding of the phenomena is necessary for the design of composite
material, including material with nanoscale heterostructures and structured biomaterial. In this
article, we consider the pattern evolution on a rather macroscopic scale. Pattern formation on
a mesoscopic scale will be extremely interesting and important. Even on that length scale, we
expect hydrodynamics to play important roles as long as the relevant length scale is comparable
to or larger than the correlation length of a fluid mixture. We believe that the basic mechanism
described in this article may also be applicable even for these complex problems. At the same
time, however, we need a basic understanding of nanorheology, which is important especially
for complex fluids with mesoscopic internal length scales.
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